Salient Object Detection Based on Unified Convex Surrogate for Non-Convex Schatten-$p$ Norm
نویسندگان
چکیده
منابع مشابه
A Unified Convex Surrogate for the Schatten-p Norm
The Schatten-p norm (0 < p < 1) has been widely used to replace the nuclear norm for better approximating the rank function. However, existing methods are either 1) not scalable for large scale problems due to relying on singular value decomposition (SVD) in every iteration, or 2) specific to some p values, e.g., 1/2, and 2/3. In this paper, we show that for any p, p1, and p2 > 0 satisfying 1/p...
متن کاملNon-Convex Weighted Schatten p-Norm Minimization based ADMM Framework for Image Restoration
Since the matrix formed by nonlocal similar patches in a natural image is of low rank, the nuclear norm minimization (NNM) has been widely used for image restoration. However, NNM tends to over-shrink the rank components and treats the different rank components equally, thus limits its capability and flexibility. This paper proposes a new approach for image restoration based ADMM framework via ...
متن کاملConvex Tensor Decomposition via Structured Schatten Norm Regularization
We study a new class of structured Schatten norms for tensors that includes two recently proposed norms (“overlapped” and “latent”) for convex-optimization-based tensor decomposition. Based on the properties of the structured Schatten norms, we analyze the performance of “latent” approach for tensor decomposition, which was empirically found to perform better than the “overlapped” approach in s...
متن کاملSalient Region Detection with Convex Hull Overlap
In this paper, we establish a novel bottom-up cue named Convex Hull Overlap (CHO), and then propose an effective approach to detect salient regions using the combination of the CHO cue and global contrast cue. Our scheme significantly differs from other earlier work in: 1) The hierarchical segmentation model based on Normalized Graph-Cut fits the splitting and merging processes in human visual ...
متن کاملVisual Processing by a Unified Schatten-p Norm and ℓq Norm Regularized Principal Component Pursuit
In this paper, we propose a non-convex formulation to recover the authentic structure from the corrupted real data. Typically, the specific structure is assumed to be low rank, which holds for a wide range of data, such as images and videos. Meanwhile, the corruption is assumed to be sparse. In the literature, such a problem is known as Robust Principal Component Analysis (RPCA), which usually ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2969271